C.U.SHAH UNIVERSITY

 Summer Examination-2016
Subject Name : Computer Graphics

Subject Code : 4TE06CGR1
Semester : 6
Date: 06/05/2016
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:
a) Higher persistence phosphorus needs which type of refresh rate?
(a) Medium
(b) Higher
(c) Lower
(d) None of these
b) Which colors are produced in beam penetration method?
(a) Red, Green, Blue, White
(b) Green, Red, White, Orange
(c) Red, Green, Blue (d) Red, Orange, Yellow, Green
c) Due to the presence of which element in DVST refreshing is not needed?
(a) Primary gun (b) Focusing anode (c) Flood gun (d)Control grid
d) In which transformation the dimensions of an object are changed relative to a specified fixed point?
(a) Rotation (b) Reflection (c) Translation (d) Scaling
e) $(5,4)$ is a point on a circle that has center at the origin. Which of the following points are also on circle ?
(a) $(5,-4)(b)(-5,4)(c)(-4,-5)$ (d) All of above
f) Suppose an RGB raster system is to be designed using an 8 -inch by 10 -inch screen with a resolution of 100 pixels per inch in each direction. If we want to store 6 bit per pixel in the frame buffer, how much storage (in bytes) do we need for the frame buffer?
(a) 486 KB
(b) 800 KB
(c) 4860 KB
(d) 10000 KB
g) If the most significant bit of the region code of a point (X, Y) is ' 1 ' , then?
(a) $\mathrm{Y}>\mathrm{YW}_{\text {MIN }}$
(b) $\mathrm{Y}>\mathrm{YW}_{\mathrm{MAX}}$
(c) $\mathrm{Y}<\mathrm{YW}_{\text {MAX }}$ (d) $\mathrm{Y}<\mathrm{YW}_{\text {MIN }}$
h) The region against which an object is clipped is known as?
(a) Clip window
(b) Boundary
(c) Enclosing rectangle (d) Clip square
i) CMY model is used for
(a) Computer display (b) Printing (c) Painting (d)None of these
j) What is the dimension of White color in Cartesian Co-ordinate system of RGB color model? 1
(a) $(1,1,0)(b)(1,0,1)(c)(0,0,0)(d)(1,1,1)$
k) What is Vanishing point?
l) What is Aspect ratio?
m) Enlist applications of flat panel display.
n) What is the matrix of reflection for $y=-x$?

Attempt any four questions from $\mathbf{Q - 2}$ to $\mathbf{Q - 8}$

Q-2 Attempt all questions

(a) Explain Seed filling for Polygon. 7
(b) What is aliasing? Briefly explain anti-aliasing techniques. $\mathbf{7}$

Q-3 Attempt all questions
(a) Derive all necessary formulas for Midpoint Ellipse drawing algorithm. Write pseudo code for

Midpoint Ellipse drawing algorithm.
(b) Briefly explain Polygon with its sub types. Discuss the Polygon Inside test.

Attempt all questions
(a) Explain various character generation methods.
(b) Calculate the pixel position along circle path with radius $\mathrm{r}=10$ centered on the $(2,2)$ using midpoint circle algorithm up to $x=y$.
(a) Prove that the multiplication of 2D transformation matrices for each of the following sequence of operations is commutative

1. Two successive rotations. 2. Two successive translations.
(b) What is shear? Explain its types. Derive the matrix for shearing regarding any reference point.

Q-6
 Attempt all questions

(a) What is polygon clipping? Explain Sutherland Hodgeman polygon clipping algorithm with the help of example. Discuss about its limitation.
(b) Write the algorithm of Liang Barsky line clipping method. And clip the line PQ having coordinates $\mathrm{P}(-5,3)$ and $\mathrm{Q}(15,9)$ against the clip window having vertices $\mathrm{A}(0,0), \mathrm{B}(10,0)$, $\mathrm{C}(10,10)$ and $\mathrm{D}(0,10)$ using Liang Barsky line clipping method.

Q-7 Attempt all questions
(a) What is reflection? Explain 3D reflection.
(b) Briefly explain Z-buffer visible surface determination algorithm.
(c) Briefly explain RGB color model.

Q-8 Attempt all questions
(a) What is projection? Explain the parallel projection techniques to project 3D object onto 2D view plane.
(b) Explain Window to View port transformation with suitable example.

